Espaces vectoriels réels

Pr. M. ABID

Mathématiques pour S. E. G.

ESPACES VECTORIELS <u>Définition d'un espace vectoriel</u>

• <u>I - Définition d'un espace vectoriel</u> I-1) Définition

E est un **espace vectoriel réel (e. v. r.),** s'il est muni de <u>deux lois</u> de composition :

- une loi de composition interne, notée (+), appelée addition des vecteurs, qui fait de E un <u>groupe commutatif</u>, c'est-à-dire, pour les éléments x, y et z de E:
 - EV1: l'addition est associative: x + (y + z) = (x + y) + z
 - EV2: l'addition est **commutative**: x + y = y + x.
 - EV3 : l'addition possède un élément neutre, noté 0_F :

 $x + 0_F = x$, 0_F est un élément de E

- EV4: tout élément x de E possède un *symétrique* pour l'addition, noté $-x: x + (-x) = 0_E$

Pr. M. ABID

Mathématiques pour S. E. G.

ESPACES VECTORIELS <u>Définition d'un espace vectoriel</u>

- une loi de composition externe, appelée multiplication par les réels (λ et μ), possédant, les propriétés suivantes :
 - EV5 : la multiplication par les réels est *distributive par rapport à l'addition* des nombres réels :

 $(\lambda + \mu) \cdot x = \lambda \cdot x + \mu \cdot x$

- EV6 : la multiplication par les réels est *distributive par rapport à l'addition* <u>des vecteurs</u> (éléments de E) :

 $\lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y$

EV7 : la multiplication par les réels est *associative* :

 $(\lambda, \mu) \cdot x = \lambda \cdot (\mu \cdot x)$

EV8 : la multiplication par le réel 1 est neutre :

1.x = x

Pr. M. ABID

Mathématiques pour S. E. G.

3

ESPACES VECTORIELS Définition d'un espace vectoriel

I-2) Exemples

 $1 - \Re$, muni de l'addition est un e. v. r. :

EV1
$$1 + (8 + (-4)) = 1 + 4 = 5$$
; $(1 + 8) + (-4) = 9 + (-4) = 5$

EV3 1 + 0 = 1

EV4 1 + (-1) = 0

EV2 1 + 5 = 5 + 1 = 6

EV5 $(2+3) \cdot 5 = 2 \cdot 5 + 3 \cdot 5 = 25$

EV6 4. (5+7) = 4.5+4.7 = 48

EV7 (2.3).5 = 2.(3.5) = 30

EV8 1.5 = 5

Pr. M. ABID

Mathématiques pour S. E. G.

ESPACES VECTORIELS Définition d'un espace vectoriel

 $2 - P_n[x]$, polynôme de degré inférieur ou égale à n, muni de l'addition est un e. v. r. :

EV1
$$P(x) + (Q(x) + R(x)) = (P(x) + (Q(x)) + R(x) = S(x) (\in P_n[x])$$

EV3
$$P(x) + 0 = P(x) (\in P_n[x])$$

EV4
$$P(x) + (-P(x)) = 0 (\in P_n[x])$$

EV2
$$P(x) + Q(x) = Q(x) + P(x) (\in P_n[x])$$

EV5
$$(\lambda + \mu)$$
. Q(x) = λ . Q(x) + μ . Q(x) = S(x) ($\in P_n[x]$)

;
$$\lambda$$
 et $\mu \in \mathcal{R}$

$$EV6 \lambda$$
. $(P(x) + (Q(x)) = \lambda$. $P(x) + \lambda$. $Q(x) = S(x) (\in P_n[x])$

EV7
$$(\lambda \cdot \mu) \cdot P(x) = \lambda \cdot (\mu \cdot P(x)) = S(x) (\in P_n[x])$$

EV8 1.
$$P(x) = P(x)$$

Pr. M. ABID

Mathématiques pour S. E. G.

5

ESPACES VECTORIELS <u>Définition d'un espace vectoriel</u>

3 - Autres exemples

- R, muni de l'addition est un e. v. r.

-
$$\Re^n$$
 = { $(\mathbf{x_1}, ..., \mathbf{x_n}) / \mathbf{x_1} \in \Re, ..., \mathbf{x_n} \in \mathbb{R}$ }, muni de la somme :

$$(\textbf{x}_1,\,...,\,\textbf{x}_n)+(\textbf{y}_1,\,...,\,\textbf{y}_n)=(\textbf{x}_1+\textbf{y}_1,\,...,\,\textbf{x}_n+\textbf{y}_n)$$

et de la multiplication par les réels :

$$\lambda$$
. $(x_1, ..., x_n) = (\lambda . x_1, ..., \lambda . x_n)$

- \mathcal{A} (D, \Re), l'ensemble des applications de D dans R muni des deux lois :

$$(f + g)(x) = f(x) + g(x)$$
 pour tout x dans D

$$(\lambda \cdot f)(x) = \lambda \cdot f(x)$$
 pour tout x dans D

Pr. M. ABID

Mathématiques pour S. E. G.

ESPACES VECTORIELS Définition d'un espace vectoriel

• 1-3) Proposition

$$\forall \lambda \in \Re \text{ et } u \in E, \text{ on a}:$$

$$1-\lambda \cdot 0_E = 0_E \quad \text{et} \quad 0 \cdot u = 0_E$$

$$2-\lambda \cdot u = 0_E \quad \Rightarrow \quad \{\lambda = 0 \text{ ou } u = 0_E\}$$

$$3- \quad (-\lambda) \cdot u = \lambda \cdot (-u) = -(\lambda \cdot u) = -\lambda \cdot u$$

Pr. M. ABID

Mathématiques pour S. E. G.

7

ESPACES VECTORIELS <u>Sous espace vectoriel</u>

• II - Sous espace vectoriel

II-1) Définition

Une partie F d'un e.v.r. E ($F \subset E$) est un sous espace vectoriel réel s. e. v. r. de E si et seulement si les *conditions* suivantes sont vérifiées :

1) $\mathbf{F} \neq \emptyset$;

F est un ensemble **non vide**

2) \forall v et w \in F, v + w \in F;

F est une partie stable pour l'addition des vecteurs

3) $\forall \mathbf{v} \in \mathbf{F} \text{ et } \forall \lambda \text{ dans } \Re, \lambda \mathbf{v} \in \mathbf{F}$;

F est une partie stable pour la multiplication par les réels.

Pr. M. ABID

Mathématiques pour S. E. G.

ESPACES VECTORIELS Sous espace vectoriel

• <u>II-2) Propriété et corollaire</u>

Propriété

Une partie **F** d'un **e. v. r. E** est un **sous espace vectoriel réel** de **E** si et seulement si **F** muni de l'addition de **E** et de la multiplication par les réels est un **e. v. r.**

corollaire

Une partie **F** d'un **e. v. r. E** est un **sous espace vectoriel réel** de E si et seulement si :

 \forall **u** et **v** \in **F**, \forall λ et $\mu \in$ R λ . **u** + μ . **v** \in **F**.

Pr. M. ABID

Mathématiques pour S. E. G.

9

ESPACES VECTORIELS <u>Sous espace vectoriel</u>

Remarques

Pour montrer qu'une partie F d'un e. v. r. E est un s. e. v. r. de E il faut :

- Vérifier d'abord que F est une partie non vide de E
- Utiliser ensuite la **définition** ou le **Corollaire**

Pr. M. ABID

Mathématiques pour S. E. G.

Système générateur

• III - Système générateur

III-1) Combinaison linéaire

III-1-a) définition

Soit $\{u_1, ..., u_p\}$ une famille de p vecteurs d'un e. v. r. E, une combinaison linéaire des p vecteurs $u_1, ..., u_p$ est un vecteur u de E s'écrivant :

11

$$\begin{split} u = & \sum_{i=I}^p \lambda_i \, u_i = \lambda_1 \, u_1 + \lambda_2 \, u_2 + \dots + \lambda_p \, u_P \\ \text{avec } \lambda_i \in \Re \text{ pour tout } 1 \leq \text{ i } \leq \text{ p} \end{split}$$

Pr. M. ABID Mathématiques pour S. E. G.

ESPACES VECTORIELS Système générateur

III-1-b) Proposition

L'ensemble de toutes ces combinaisons linéaires est appelé s. e. v. r. engendré par les vecteurs u_i , i=1..p, qu'on note:

$$F = \langle u_1, ..., u_p \rangle$$
 ou $F = vect(u_1, ..., u_p)$

Pr. M. ABID Mathématiques pour S. E. G.

Système générateur

III-1-c) Sous espace vectoriel engendré par

 $\{u_1, ..., u_p\}$

Étant donné p vecteurs $\mathbf{u_1}$, ..., $\mathbf{u_p}$ d'un e. v. r. E, L'ensemble F définie par :

$$F = \left\{ v \in E / v = \sum_{i=1}^{p} \lambda_{i} u_{i}, \ \lambda_{i} \in \mathfrak{R} \right\}$$

est un sous espace vectoriel de E appelé s. e. v. r. engendré par les vecteurs u_i , i=1..p.

Pr. M. ABID

Mathématiques pour S. E. G.

13

ESPACES VECTORIELS

Système générateur

Démonstration

• \mathbf{F} n'est pas une partie vide car $\mathbf{0}_{\mathbf{E}} \in \mathbf{F}$:

$$\mathbf{0}_{F} = 0 \cdot \mathbf{u}_{1} + \dots + 0 \cdot \mathbf{u}_{n}$$

- F est un sous espace vectoriel de E:
 - Si u et v appartiennent à F alors

$$\mathbf{u} = \lambda_1.u_1 + ... + \lambda_p.u_p$$
 et $\mathbf{v} = \mu_1.u_1 + ... + \mu_p.u_p$

$$\mathbf{w} = \mathbf{u} + \mathbf{v} = (\lambda_1 + \mu_1).\mathbf{u}_1 + ... + (\lambda_p + \mu_p).\mathbf{u}_p$$

Par conséquent **w** ∈ **F**

Si $\mathbf{u} \in \mathbf{F}$ et $\mu \in \mathbb{R}$, alors

$$\mu \cdot \mathbf{u} = \mu(\lambda_1 \cdot \mathbf{u_1} + ... + \lambda_p \cdot \mathbf{u_p})$$

$$\mu \cdot \mathbf{u} = \mu \lambda_1 \cdot \mathbf{u_1} + ... + \mu \lambda_0 \cdot \mathbf{u_p}$$

Par conséquent μ . U \in F $_{\text{N. M. ABID}}$

Système générateur

III-1-d) Exemple

Soit F un s. e. v. r. engendré par les vecteurs (x, y, z) de \Re^3 , tells que : x + y + z = 0. Montrer que F est engendré par les vecteurs (0, 1, -1) et (1, 0, -1).

$$\forall u \in F \exists \lambda_1 \text{ et } \lambda_2 \in \Re /$$

$$u = \lambda_1 (1,0,-1) + \lambda_2 (0,1,-1)$$

$$u = (\lambda_1, \lambda_2, -(\lambda_1 + \lambda_2))$$

$$u = (x, y, z) = (x, y, -(x+y)) = (\lambda_1, \lambda_2, -(\lambda_1 + \lambda_2))$$

$$\Rightarrow \lambda_1 = x \text{ et } \lambda_2 = y$$

$$\forall u \in F \exists x \text{ et } y \in \Re /$$

$$u = (x, y, z) = (x, y, -(x+y)) = x(1,0,-1) + y(0,1,-1)$$

Pr. M. ABID

Mathématiques pour S. E. G.

15

ESPACES VECTORIELS Système générateur

III-2) Parties génératrices

III-2-a) définition-1

Soit une famille de **p** vecteurs $\mathbf{u_1}$, ..., $\mathbf{u_p}$ d'un **e. v. r.** \mathbf{E} , $\{\mathbf{u_1}, ..., \mathbf{u_p}\}$ est une **partie génératrice** de \mathbf{E} si et seulement si :

$$E = < u_1, ..., u_p >$$

III-2-a) définition-2

 $\{u_1,...,u_p \ \} \ \text{est une partie génératrice} \ \text{de } \textbf{\textit{E}} \ \text{si et seulement si} : \\ \forall \ \textbf{\textit{u}} \in \textit{\textit{E}}, \ \exists \ \lambda_1, \ ..., \ \lambda_p \in \ \text{R tel que} : \ \textbf{\textit{u}} = \lambda_1 . \ \textbf{\textit{u}}_1 + ... + \lambda_p . \ \textbf{\textit{u}}_p$

Pr. M. ABID

Mathématiques pour S. E. G.

ESPACES VECTORIELS **Dépendance et indépendance linéaire**

• IV – Dépendance et indépendance linéaire

IV-1) Famille ou partie libre

IV-1-a) définition

Une famille p vecteurs $\mathbf{u_1}$, ..., $\mathbf{u_p}$ d'un e. v. r. \mathbf{E} , soit { $\mathbf{u_1}$,..., $\mathbf{u_p}$ }, est une partie libre de \mathbf{E} si et seulement si :

$$\sum_{i=1}^{p} \lambda_{i} u_{i} = 0_{E} \Rightarrow \lambda_{i} = 0 \text{ pour tout } 1 \leq i \leq p$$

On dit alors que les vecteurs ${\bf u_1},...,{\bf u_p}$ sont **linéairement indépendants.** Et la partie $\{\,{\bf u_1},...,{\bf u_p}\,\}$ est dite **libre**

IV-1-b) Propriété

Toute partie extraite d'une partie libre de E est une partie libre de E.

Pr. M. ABID Mathématiques pour S. E. G. 17

ESPACES VECTORIELS **Dépendance et indépendance linéaire**

IV-2) Famille ou partie liée

IV-2-a) définition

Une famille p vecteurs $\mathbf{u_1}$, ..., $\mathbf{u_p}$ d'un e. v. r. E, soit { $\mathbf{u_1}$,..., $\mathbf{u_p}$ }, est une partie liée de E si elle n'est pas libre; c.à.d. \exists $\lambda \mathbf{i} \neq \mathbf{0}$.

On dit alors que les vecteurs $\mathbf{u_1}$, ..., $\mathbf{u_p}$ sont linéairement dépendants.

IV-2-b) Propriété

Si l'un des vecteurs $\mathbf{u_i}$ est nul alors { $\mathbf{u_1}$,..., $\mathbf{u_p}$ }, est une partie liée de E.

Pr. M. ABID

Mathématiques pour S. E. G.

Dépendance et indépendance linéaire

IV-2-c) proposition

Une Famille $\{u_1,...,u_p\}$, est une partie liée de E si et seulement si l'un au moins des vecteurs \mathbf{u}_i est une combinaison linéaire des autres.

$$\sum_{i=1}^{p} \lambda_{i} u_{i} = 0_{E} \Longrightarrow \exists \lambda_{j} \neq 0 \Longrightarrow u_{j} = -\sum_{\substack{i=1 \ i \neq j}}^{p} \frac{\lambda_{i}}{\lambda_{j}} u_{i}$$

IV-3 exemples

IV-3-a) exemple 1

On montre que $\{(1,0), (0,1)\}$ est une partie génératrice de \mathbb{R}^2 .

En effet, il suffit de remarquer que pour avoir :

$$u = \lambda$$
. (1,0) + μ . (0,1) = (0,0)

II faut que $\lambda = \mu = 0$

Pr. M. ABID

Mathématiques pour S. E. G.

19

ESPACES VECTORIELS

Dépendance et indépendance linéaire

IV- 3-b) exemple 2

{(1,0,0), (1,1,1), (-1,-2,-2)} est une partie liée.

En effet,

 λ_1 . (1,0,0) + λ_2 . (1,1,1) + λ_3 . (-1,-2,-2) = (0,0,0) est satisfait pour tout triplet $(\lambda_1, \lambda_2, \lambda_3) = \alpha$ (-1,2,1)

En effet : (-1,-2,-2) = 1. (1,0,0) - 2. (1,1,1).

Pr. M. ABID

Mathématiques pour S. E. G.

Base

V Bases

V-1) Dimension d'un e. v. r.

Un e. v. r. est dit de dimension finie s'il existe une partie génératrice de **E** contenant un nombre fini de vecteurs.

Exemple

 $E = R^2$ est un e. v. r. de dimension finie : dim (E) = 2 $R^2 = < (1, 0), (0, 1) >$; dim (R^2) = 2

Pr. M. ABID

Mathématiques pour S. E. G.

21

ESPACES VECTORIELS

Base

V-2-a) Définition-1

Une famille de vecteurs $\{e_1, ..., e_n\}$ d'un e. v. r. , de dimension finie n, une base de E si les deux conditions suivantes sont vérifiées :

- 1 Les vecteurs **e**_i , **i=1...n**, **sont linéairement indépendants**, La famille { **e**₁, ..., **e**_n } est libre.
- 2 Les vecteurs e_i, i=1...n, engendrent E,
 La famille { e₁, ..., e_n } est génératrice.

Pr. M. ABID

Mathématiques pour S. E. G.

Base

IV-2-a) Définition-2

Étant donné un e. v. r. de dimension finie n, une base de E est un ensemble constitué de n vecteurs de E, $\{e_1, ..., e_n\}$ tel que tout vecteur u de E s'écrive d'une façon unique sous la forme :

$$u = \sum_{i=1}^{n} \lambda_{i} e_{i}$$

Les λ_i sont les **composantes** du vecteur **u** relativement à la base { $\mathbf{e_1}$, ..., $\mathbf{e_n}$ }.

Pr. M. ABID

Mathématiques pour S. E. G.

23

ESPACES VECTORIELS

Base

V-3) Propriété caractéristique

 $\{e_1, ..., e_n\}$ est une base de E si et seulement si $\{e_1, ..., e_n\}$ est une partie génératrice libre de E.

démonstration:

- Supposons que $\{e_1, ..., e_n\}$ soit une base de E. C'est donc une partie génératrice de E. Montrons qu'elle est libre.

$$\sum_{i=1}^{n} \lambda_{i} \mathbf{e}_{i} = 0_{E} = 0.\mathbf{e}_{1} + ... + 0.\mathbf{e}_{n}$$

La décomposition étant unique, les λ_i sont tous nuls.

Pr. M. ABID

Mathématiques pour S. E. G.

Base

V-4) Unicité de la décomposition

Réciproquement, supposons que $\{e_1, ..., e_n\}$ soit une partie génératrice libre de E. ______

 $\mathbf{u} = \sum_{i=1}^{n} \lambda_{i} \mathbf{e}_{i}$

Soit $u = \sum_{i=1}^{n} \mu_i e_i$ une autre décomposition de u.

$$\sum_{i=1}^{n} \lambda_i \mathbf{e}_i = \sum_{i=1}^{n} \mu_i \mathbf{e}_i \implies \sum_{i=1}^{n} (\lambda_i - \mu_i) \mathbf{e}_i = 0_{\mathsf{E}}$$

Comme { $\mathbf{e_1}$, ..., $\mathbf{e_n}$ } est une partie libre, $\lambda_i = \mu_i$ pour 1≤i≤n Il s'ensuit que u s'écrit donc d'une façon unique :

$$\mathbf{u} = \sum_{i=1}^{n} \lambda_{i} \mathbf{e}_{i}$$

 $\mathbf{u} = \sum_{i=1}^{n} \lambda_{i} \mathbf{e}_{i}$ et { \mathbf{e}_{1} ,..., \mathbf{e}_{n} } est une base de E.

25

ESPACES VECTORIELS

Base

V-5) Détermination pratique d'une base

- Comment montrer qu'une partie { $e_1,...,e_n$ } d'un espace vectoriel E est une base?
 - 1) On ne connaît pas la dimension de E. On utilise alors soit la définition soit la propriété caractéristique.
 - 2) On connaît la dimension n de E.

On montre alors que $\{e_1, ..., e_n\}$ est une partie libre.

Pr. M. ABID

Mathématiques pour S. E. G.

ESPACES VECTORIELS <u>Base</u>

V-6) Corollaire

Dans un espace vectoriel de dimension n :

- Toute famille de plus de n éléments est liée.
- Toute famille de moins de n éléments ne peut être génératrice.
- Toute famille libre de n éléments forme une base.
- Toute famille génératrice de n éléments forme une base.

Pr. M. ABID Mathématiques pour S. E. G.

ESPACES VECTORIELS Norme et produit scalaire

VI) Norme

VI-1) Définition

On appelle norme d'un vecteur ${\bf u}$ l'application de l'espace vectoriel ${\bf E}$ dans \Re^+ , notée N(${\bf u}$), qui vérifie les trois propriétés suivantes :

- $N(u) = 0 \Rightarrow u = 0_F$
- $N(u + v) \leq N(u) + N(v)$
- $N(\lambda.\mathbf{u}) = |\lambda|.N(\mathbf{u})$

VI-2) Norme euclidien

$$u = (n_1, n_1, ..., n_p) \rightarrow N(u) = \sqrt{\sum_{i=1}^{p} n_i^2}$$

Pr. M. ABID

Mathématiques pour S. E. G.

ESPACES VECTORIELS Norme et produit scalaire

VII) Produit scalaire

VII-1) Définition

Soient deux vecteurs **u** et **v**, d'un e. v. r. **E**, définis par :

$$\mathbf{u} = (n_1, n_2,, n_p)$$
 et $\mathbf{v} = (m_1, m_2,, m_p)$

On appelle produit scalaire de deux vecteurs ${\bf u}$ et ${\bf v}$, noté $<{\bf u},{\bf v}>$, le nombre :

$$\langle u, v \rangle = n_1.m_1 + n_2.m_2 + \dots + n_p.m_p$$

Pr. M. ABID

Mathématiques pour S. E. G.